和记真人盘口

<dfn id="fnpjx"></dfn>

  • <bdo id="fnpjx"><b id="fnpjx"><p id="fnpjx"></p></b></bdo>

    <address id="fnpjx"><dfn id="fnpjx"><ins id="fnpjx"></ins></dfn></address>

    <thead id="fnpjx"><var id="fnpjx"><ins id="fnpjx"></ins></var></thead>

      <address id="fnpjx"></address>

    <sub id="fnpjx"><listing id="fnpjx"></listing></sub>

      <address id="fnpjx"></address><sub id="fnpjx"><listing id="fnpjx"></listing></sub>

            <address id="fnpjx"><dfn id="fnpjx"></dfn></address>
            <address id="fnpjx"></address>
              <sub id="fnpjx"><listing id="fnpjx"><menuitem id="fnpjx"></menuitem></listing></sub>

                  <address id="fnpjx"><listing id="fnpjx"></listing></address>

                  <address id="fnpjx"><dfn id="fnpjx"><mark id="fnpjx"></mark></dfn></address>

                  Home  |  Sitemap  |  Contact Us  |  中文

                  Home > Events > Content
                  Lecture on "Uniformly Accurate Method for Highly Oscillatory Klein-Gordon Equation and Related Models"
                  DateandTime: 2019-12-13 11:19:16

                  Speaker:Xiaofei Zhao, Professor, Department of Information and Computational Sciences, Wuhan University

                  Date:December 13, 2019

                  Time:4:00-5:00 pm

                  Location:1238 Lecture Hall, Block B, Zhixin Building, Central Campus

                  Sponsor:Zhongtai Securities Institute for Financial Studies

                  Abstract:

                  In this talk, I will present the numerical methods for solving the nonlinear Klein-Gordon equation and some related models in the highly oscillatory regime. I will start with my work for the nonlinear Klein-Gordon equation in the non-relativistic limit regime, and introduce the uniformly accurate (UA) method. The UA method can allow step size independent of the small parameter. Then I will present my recent work of designing such UA scheme for the Klein-Gordon-Zakharov system in a double limit regime, which is an important model in plasma physics involving two independent small parameters.

                  Bio:

                  Prof. Zhao completed his Ph.D. from National University of Singapore in 2014. He is associate professor of School of Mathematics and Statistics at Wuhan University. His/Her main research interests include numerical methods for PDEs and computational physics. He has published more than twenty academic papers in top journals.

                  For more information, please visit:

                  http://mathfinance.sdu.edu.cn/info/1273/4212.htm

                  Edited by: Wei Zhen




                  Copyright 2011 © All rights reserved, Network Center, Shandong University    |    englishweb@sdu.edu.cn

                  <dfn id="fnpjx"></dfn>

                1. <bdo id="fnpjx"><b id="fnpjx"><p id="fnpjx"></p></b></bdo>

                  <address id="fnpjx"><dfn id="fnpjx"><ins id="fnpjx"></ins></dfn></address>

                  <thead id="fnpjx"><var id="fnpjx"><ins id="fnpjx"></ins></var></thead>

                    <address id="fnpjx"></address>

                  <sub id="fnpjx"><listing id="fnpjx"></listing></sub>

                    <address id="fnpjx"></address><sub id="fnpjx"><listing id="fnpjx"></listing></sub>

                          <address id="fnpjx"><dfn id="fnpjx"></dfn></address>
                          <address id="fnpjx"></address>
                            <sub id="fnpjx"><listing id="fnpjx"><menuitem id="fnpjx"></menuitem></listing></sub>

                                <address id="fnpjx"><listing id="fnpjx"></listing></address>

                                <address id="fnpjx"><dfn id="fnpjx"><mark id="fnpjx"></mark></dfn></address>

                                ub8 优游娱注册

                                大赢家即使比分

                                彩赢娱乐平台

                                亚投福彩快三

                                恒大官网

                                现金娱乐网大全

                                88必发官网网页

                                平台注册

                                mg电子游戏最佳平台